Reliability Metrics and Reliability Value-Based Planning #### Joseph H. Eto Lawrence Berkeley National Laboratory **Distribution Systems and Planning Training** for Western States, May 2-3, 2018 ## Overview of this presentation - ► Reliability Metrics - ► Major Events (IEEE Std. 1366 definition) - ► Reliability vs. Resilience - Reliability Value-Based Planning - ► The Interruption Cost Estimate (ICE) Calculator - Considerations for Reliability Planning Emerging from Recent LBNL Research - Bibliography # Electricity reliability is measured by the annual average amount of time and frequency that the lights are out #### **System Average Interruption Duration Index** #### **System Average Interruption Frequency Index** ## **Customer Average Interruption Duration Index** #### **Momentary Average Interruption Frequency Index** | IEEE Standard 1366 | Investor
Owned | Cooperative | Municipal | | |------------------------------------|-------------------|-------------|-----------|--| | Number of utilities reporting | 137 | 296 | 117 | | | % of U.S. sales by type of utility | 51% | 47% | 43% | | | SAIDI with Major Events | 237 | 302 | 115 | | | SAIDI without Major Events | 136 | 159 | 50 | | | SAIFI with Major Events | 1.4 | 2.8 | 0.9 | | | SAIFI without Major Events | 1.2 | 2.1 | 0.7 | | #### **IEEE Standard 1366** - First developed in 1998 to define reliability indices; amended in 2003 to add a consistent approach for segmenting Major Event Days (amended again in 2012; MED definition unchanged) - ▶ Uses 2.5*beta to estimate a threshold daily SAIDI, Tmed, above which a Major Event Day is identified - Tmed = exp $(\alpha+2.5\beta)$ - Beta = log-normal standard deviation - Alpha = log-normal statistical mean - For a *normal* distribution: - Multiplying beta (the standard deviation) by 2.5 covers 99.379% of the expected observations (assuming a one-sided confidence interval) - For a year of daily observations, this translates to an expectation of 2.3 Major Event Days per year - But, utility daily SAIDI data are not "perfectly" normally distributed ## Daily SAIDI for 5 years (2011-2015) ## Daily SAIDI Re-Ordered from Lowest to Highest ## Daily SAIDI for 2016 → 4 MEDs #### 4 MEDs in year 2016: - 1. Feb 16 - Jun 16 - **Jul 13** - 4. Aug 28 ## Reliability vs. Resilience | | Reliability | Resilience | |-------------------------------------|---|---| | Common features/
characteristics | Routine, expected, normally localized, shorter duration interruptions of electric service | Infrequent, unexpected, widespread/long duration power interruptions, often with significant corollary impacts | | | Larger events will make it into the local headlines | Always national headline worthy | | Metrics | Well-established, annualized (SAIDI, SAIFI, MAIFI), with provisions for "major events" Rarely include non-electricity impacts | Non-standardized, event-based (number of customers affected; hours without electric service) Routinely include non-electricity impacts (e.g., costs to firms; health and safety impacts) | | Actions to improve | Plan and prepare; Manage and endure event(s); Recover and restore; and Assess, learn, and update plan. | No qualitative difference But generally larger in scope/cost (see below) | ## Reliability vs. Resilience | | Reliability | Resilience | |--------------------------------------|---|--| | Entities involved in decision making | Electric utility and its regulator/oversight board, primarily | Electric utility and regulator | | | | But also and routinely in conjunction with parties that have responsibilities for other critical infrastructures, including local/regional/state/federal agencies/authorities, and communities/elected officials | | Factors affecting decision making | Actuarial records on frequency of exposure – widely understood risks: insurable | No actuarial basis to establish likelihood of occurrence – widely varying perceptions of risk/exposure: un-insurable | | | Well-understood/tested practices/approaches | Large dellar amounts (outroordinary) | | | Understood to be an expected cost of doing business | Large dollar amounts/extraordinary expenditures may require special approval/vote | | | | Political judgements essential | 10 ## Introducing Reliability Value-Based Planning - ➤ The pace of electricity grid modernization efforts will be determined by decisions made by electric utilities, their customers, and local communities/states to adopt new technologies and practices - ► An important motivation for these actions will be maintaining or improving the reliability and resiliency of electric service - ► From an economic perspective, the justification for these actions will therefore, depend, at least in part, on: - ☐ The cost of the actions under consideration; - □ The impact they are expected to have on reliability or resilience; and - ☐ The value these impacts have to the utility, its customers, and the community/state - ▶ Better information will enable, but does not guarantee, better decisions and remember... we will never have perfect information # Value-Based Reliability Planning is a means for taking the cost of interruptions borne by customers into utility planning decisions ## The Economics of Power System Reliability and Planning Theory and Case Study Figure 13.1. Optimization of the Outage System: Costs Versus Outage Rate Note: SC = distribution system supply costs; OC = global outage costs; and TC = total costs. The plotted data points and solid lines refer to efficiency priced costs; the broken lines indicate the costs in terms of social prices. ## Value-Based Reliability Planning example: Distribution Automation - Utility: EPB of Chattanooga - Customers Impacted: 174,000 customers (entire territory) - Investment: 1,200 automated circuit switches and sensors on 171 circuits - ► Reliability Improvement: - □ SAIDI **4**45% (from 112 to 61.8 minutes/year) - □ SAIFI **\$**51% (from 1.42 to 0.69 interruptions/year) (between 2010 and 2015) #### **Annual Costs and Benefits** #### Avoided Cost of Severe Storm #### ICE Calculator: http://icecalculator.com #### ICECalculator.com Interruption Cost Estimate Calculator The Interruption Cost Estimate (ICE) Calculator is a tool designed for electric reliability planners at utilities, government organizations or other entities that are interested in estimating interruption costs and/or the benefits associated with reliability improvements. #### Home About the Calculator Disclaimer Relevant Reports Contact Us #### Use the ICE Calculator to: - Estimate Interruption Costs Estimate the cost per interruption event, per average kW, per unserved kWh and the total cost of sustained electric power interruptions. - Estimate Value of Reliability Improvement in a Static Environment Estimate the value associated with a given reliability improvement. The environment is "static" because the expected reliability with and without the improvement does not change over time. - Estimate Value of Reliability Improvement in a Dynamic Environment Estimate the value associated with a given reliability improvement. The environment is "dynamic" because the expected reliability with and without the improvement changes over time based on forecasts of SAIFI, SAIDI and CAIDI. This tool was funded by the Lawrence Berkeley National Laboratory and Department of Energy. Developed by Freeman, Sullivan & Co. Learn more about the federal initiatives that support the development of the technologies, policies and projects transforming the electric power industry on SmartGrid.gov. Copyright 2011 #### Varies by type of customer and depends on when and for how long their lights are out | | Interruption Duration | | | | | |----------------------|-----------------------|------------|----------|----------|----------| | Interruption Cost | Momentary | 30 minutes | 1 hour | 4 hours | 8 hours | | Medium and Large C&I | | | _ | | | | Morning | \$8,133 | \$11,035 | \$14,488 | \$43,954 | \$70,190 | | Afternoon | \$11,756 | \$15,709 | \$20,360 | \$59,188 | \$93,890 | | Evening | \$9,276 | \$12,844 | \$17,162 | \$55,278 | \$89,145 | | Small C&I | | | | | | | Morning | \$346 | \$492 | \$673 | \$2,389 | \$4,348 | | Afternoon | \$439 | \$610 | \$818 | \$2,696 | \$4,768 | | Evening | \$199 | \$299 | \$431 | \$1,881 | \$3,734 | | Residential | | | ¥ | | | | Morning | \$3.7 | \$4.4 | \$5.2 | \$9.9 | \$13.6 | | Afternoon | \$2.7 | \$3.3 | \$3.9 | \$7.8 | \$10.7 | | Evening | \$2.4 | \$3.0 | \$3.7 | \$8.4 | \$11.9 | # Customer-weighted proportion of SAIDI and SAIFI due to loss of supply (2008-2014, n = 73) ## SAIDI and SAIFI due to loss of supply vs. maximum reported distribution voltage # LBNL finds that reliability is getting worse due to increased severity/frequency of major events Source: Larsen, P. K LaCommare, J. Eto, J. Sweeney. Recent Trends in Power System Reliability and Implications for Evaluating Future Investments in Resiliency. Energy 117 (2016) 29-46. http://dx.doi.org/10.1016/j.energy.2016.10.063 ## Installed Capacity of Back-up Generation Source: Frost and Sullivan. 2015. "Analysis of the US Power Quality Equipment Market." Berkeley California: Lawrence Berkeley National Laboratory. LBNL-1003990. August. Accessible at: http://eetd.lbl.gov/sites/all/files/lbnl-1003990.pdf #### Some themes to keep in mind - "What's measured improves" - Peter F. Drucker - "Delegating your accountabilities is abdication" - Michael E. Gerber - "Not everything that can be counted counts, and not everything that counts can be counted" - Albert Einstein ## **Bibliography** - ► <u>LaCommare, Kristina Hamachi, Peter H. Larsen, and Joseph H. Eto</u>. <u>Evaluating Proposed Investments in Power System Reliability and Resilience: Preliminary Results from Interviews with Public Utility Commission Staff</u>., 2017.https://emp.lbl.gov/sites/default/files/lbnl-_1006971.pdf - ► <u>Larsen, Peter H.</u>. "A Method to Estimate the Costs and Benefits of Undergrounding Electricity Transmission and Distribution <u>lines</u>." *Energy Economics* 60, no. November 2016 (2016): 47-61. https://emp.lbl.gov/sites/default/files/lbnl-1006394 prepublication.pdf - Larsen, Peter H., Kristina Hamachi LaCommare, Joseph H. Eto, and James L. Sweeney. Assessing Changes in the Reliability of the U.S. Electric Power System., 2015. https://emp.lbl.gov/sites/default/files/lbnl-188741.pdf - ► <u>Eto, Joseph H., Kristina Hamachi LaCommare, Michael D. Sohn, and Heidemarie C. Caswell.</u> "<u>Evaluating the Performance of the IEEE Standard 1366 Method for Identifying Major Event Days View Document.</u>" *IEEE Transactions on Power Systems* 32, no. 2 (2016). - ▶ <u>Sullivan, Michael J., Josh A. Schellenberg</u>, and <u>Marshall Blundell</u>. <u>Updated Value of Service Reliability Estimates for Electric Utility Customers in the United States.</u>, 2015. https://emp.lbl.gov/sites/default/files/lbnl-6941e.pdf - https://emp.lbl.gov/research/electricity-reliability